
Audio-domain Position-independent Backdoor Attack via
Unnoticeable Triggers

Cong Shi
Rutgers University

cs1421@scarletmail.

rutgers.edu

Tianfang Zhang
Rutgers University

tz203@scarletmail.

rutgers.edu

Zhuohang Li
University of

Tennessee, Knoxville

zli96@vols.utk.edu

Huy Phan
Rutgers University

huy.phan@

rutgers.edu

Tianming Zhao
Temple University

tianming.zhao@

temple.edu

Yan Wang
Temple University

y.wang@

temple.edu

Jian Liu
University of

Tennessee, Knoxville

jliu@utk.edu

Bo Yuan
Rutgers University

bo.yuan@soe.

rutgers.edu

Yingying Chen∗

Rutgers University

yingche@scarletmail.

rutgers.edu

ABSTRACT

Deep learning models have become key enablers of voice user in-

terfaces. With the growing trend of adopting outsourced training

of these models, backdoor attacks, stealthy yet effective training-

phase attacks, have gained increasing attention. They inject hidden

trigger patterns through training set poisoning and overwrite the

model’s predictions in the inference phase. Research in backdoor

attacks has been focusing on image classification tasks, while there

have been few studies in the audio domain. In this work, we explore

the severity of audio-domain backdoor attacks and demonstrate

their feasibility under practical scenarios of voice user interfaces,

where an adversary injects (plays) an unnoticeable audio trigger

into live speech to launch the attack. To realize such attacks, we

consider jointly optimizing the audio trigger and the target model in

the training phase, deriving a position-independent, unnoticeable,

and robust audio trigger. We design new data poisoning techniques

and penalty-based algorithms that inject the trigger into randomly

generated temporal positions in the audio input during training,

rendering the trigger resilient to any temporal position variations.

We further design an environmental sound mimicking technique

to make the trigger resemble unnoticeable situational sounds and

simulate played over-the-air distortions to improve the trigger’s

robustness during the joint optimization process. Extensive ex-

periments on two important applications (i.e., speech command

recognition and speaker recognition) demonstrate that our attack

can achieve an average success rate of over 99% under both digital

and physical attack settings.
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1 INTRODUCTION

Voice is one of the most important means of communication in

human-computer interactions. Driven by the state-of-the-art deep

learningmodels, voice assistant systems (e.g., AmazonAlexa, Google

Assistant, and Apple Siri) aim to achieve high accuracy in under-

standing speech content (i.e., speech command recognition) and

identifying the speaker (i.e., speaker recognition) only through

users’ voices. These models are usually expensive to train (e.g., re-

quiring large amounts of computational resources and over weeks

of training time). Thus, it is common for individuals/companies

to outsource the training work to a machine-learning-as-a-service

(MLaaS) provider, such as Google Vertex AI [12], Amazon Sage-

maker [3], and Microsoft Azure Machine Learning [23] to save

cost. However, this kind of practice can cause training phase at-

tacks since adversarial employees of MLaaS providers may have

full access to all the resources in the training process, including the

data, model, and training operations. For example, an attacker can

poison the dataset used for training a speech command recognition

model in the training phase to degrade the model’s performance

on classifying some specific words in the inference phase [1].

Among the training phase attacks, backdoor attacks originally

discovered in the image domain [13, 22] have gained considerable

attention due to their high attack success rates and stealthiness. The

backdoor is a hidden trigger pattern (e.g., a sticker or a watermark)

trained into a deep learning model that can change the model’s

prediction to an adversary-specified class in the inference phase. In

addition, the backdoored model (i.e., the model trained with the hid-

den trigger pattern and clean data) behaves normally when the data

do not contain the backdoor trigger, so it is difficult for users to re-

alize the existence of such backdoors. Compared to inference-phase

adversarial attacks, such as adversarial examples [4, 11], backdoor
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Figure 1: The workflow of audio-domain position-independent backdoor attack.

attacks are more robust under practical distortions [45], such as

additive noises, transformation, and physical interference. To make

the attack practical and successful, the adversary needs to con-

sider multiple dimensions of distortions (e.g., hardware noises [20],

physical channel properties [6]) when generating adversarial per-

turbations, making the optimization process complicated and time-

consuming. Even so, it is still difficult for adversarial attacks to

achieve a similar degree of robustness as the backdoor attack. In

addition, the backdoor trigger can be directly applied to any pre-

viously unknown inputs, while adversarial attacks need to craft

either input-specific [11] or universal perturbations [20] through

optimization before launching the attack, which is complicated and

time-consuming. The existing studies mainly focus on exploring

backdoor attacks targeting image classification schemes (e.g., face-

recognition [22], traffic sign detection [24]) but few in the audio

domain. As such, it is essential to understand how and to what

extent a backdoor attack can compromise the security and privacy

of the state-of-the-art deep learning models in the audio domain

with the growing trend of the voice assistant systems. In this work,

we study the severity of audio-domain backdoor attacks in two im-

portant applications (i.e., speech command recognition and speaker

recognition). In addition, we demonstrate the feasibility of launch-

ing the attacks in the physical world by using a loudspeaker to play

a carefully designed, unnoticeable audio trigger.

Fundamental Differences from Existing Attacks. Our work

exhibits several crucial differences compared to prior studies on

backdoor attacks. Particularly, research in backdoor attacks has

been mainly focusing on the image domain [13, 22], and there are

only few studies in the audio domain. For instance, researchers [15,

43] recently investigate audio-domain backdoor attacks in static

attack scenarios, where a trigger is always injected at a fixed tempo-

ral position of the audio data used in the training and testing phases.

Such attacks are not feasible in real scenarios, where the adversary

needs to play an audio trigger using a loudspeaker to attack the

user’s speeches. Without a perfect synchronization method, these

attacks would have poor performance as the adversary cannot al-

ways inject the trigger at the same temporal position in the user’s

speeches as the triggers’ position used in the training phase. Dif-

ferent from these initial attempts, we design the first dynamic and

position-independent attack in the audio domain that does not re-

quire any form of synchronization between the trigger and the audio

waveform. We realize such an attack by jointly learning the audio

trigger and the backdoored model in the training phase, thereby se-

lecting an optimal trigger that can effectively change the inference

results regardless of its temporal position in the recorded human

speech. In addition, prior studies [15, 43] in the audio domain only

consider digital attack scenarios, where a trigger is directly added

into the audio waveform data without considering channel distor-

tions in the physical world. Our designed audio-domain backdoor

attack is applicable to over-the-air physical attack scenarios, in

which a loudspeaker plays an audio trigger unnoticeable to human

ears to backdoor a speech command recognition/speaker recogni-

tion model remotely.

Challenges.We face several challenges to realize such a position-

independent and practical audio-domain backdoor attack. In speech

command recognition and speaker identification applications, it

is impossible for the adversary to always inject the trigger at the

same temporal position to the user’s live speech. Therefore, the

backdoor model and the trigger need to be designed to accommo-

date the dynamic temporal position variance and effectively attack

the inference tasks. In addition, the trigger may fall into either the

speech part or non-speech part of the user’s live speech during

the attack. It is necessary to develop a reliable trigger pattern that

is resilient to the interferences from human speech and environ-

mental noises. Also, the trigger should be unnoticeable to human

ears. Otherwise, the user may detect the attack easily. Moreover,

the adversary needs to replay the audio trigger over the air by

using a playback device (e.g., a loudspeaker) during the attack. The

trigger needs to be robust enough to sustain channel distortions

during sound propagation, such as sound attenuation, absorption,

and reverberation.

Proposed Position-independent Backdoor Attack. Toward

this end, we design a backdoor learning framework that derives

a position-independent backdoored model and an unnoticeable,

robust audio trigger that can effectively attack voice-based applica-

tions, including speech command recognition and speaker recog-

nition. The proposed backdoor attack can be easily launched in

practice using a loudspeaker to play the audio trigger during the

user’s speech without being noticed. The flow of the proposed

audio-domain backdoor attack is illustrated in Figure 1. Specifically,

in the training phase, the attacker trains the backdoored model by

injecting an audio trigger into a small proportion of the training

dataset data and poisoning the corresponding labels. Unlike prior

studies, we develop a joint optimization process to generate the

model and the trigger pattern robust under the unpredictable tem-

poral positions of the trigger injected in the user’s live speech. In

the inference phase, the attacker launches the backdoor attack by

injecting the audio trigger to the user’s live speech regardless of
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its temporal positions in the speech. The speech and the trigger

are recorded together and processed by the voice-based applica-

tion (e.g., speech command recognition or speaker identification)

equipped with the backdoored model. The model generates the

adversary-specified label or unaltered label depending on whether

the recorded speech contains a trigger or not.

To realize such a backdoor attack, we design a suite of optimiza-

tion techniques to poison the deep learning model while jointly

optimizing the audio trigger. Particularly, to compromise a back-

doored model tacking streaming audio input, we propose to inject

the trigger over an entire temporal position distribution of the au-

dio input during data poisoning, rendering the generated trigger

resilient to temporal position variations. We further penalize the

differences between two sets of model outputs based on the input

data with the trigger overlapping with the speech and the non-

speech parts. This process enhances the attack’s effectiveness when

the trigger is injected into any part of the audio input. To make

the generated trigger unnoticeable to humans, we make the audio

trigger sound similar to an environmental sound (e.g., birds singing,

car horns, or footsteps) by minimizing the time-frequency pattern

difference between the trigger and an environmental sound tem-

plate. Moreover, to facilitate launching the attacks in the physical

world, we simulate the sound propagation in the room and estimate

the channel distortion utilizing room impulse responses (RIRs). The

simulated channel distortions are used in our joint optimization of

the model and the trigger to enhance the robustness of the trigger

to the sound propagation in real environments.

• To the best of our knowledge, this is the first work that explores

position-independent, unnoticeable, and robust backdoor attacks

in the audio domain. We develop a framework to learn an optimal

audio trigger resilient to the temporal position variations when

poisoning the target deep learning model.

• We explore new data poisoning and penalty-based techniques

that inject the trigger over the entire temporal position distri-

bution of the audio input, making the generated audio trigger

retain its effectiveness under any temporal positions in the audio

input, even when it falls inside the region of human speech.

• Wedevelop an optimization scheme to search for the unnoticeable

audio trigger that mimics environmental sounds. We further

simulate over-the-air distortions by leveraging room impulse

responses to generate robust audio triggers.

• We validate the proof-of-concept attacks on six representative

deep learning models, involving both speech command recogni-

tion and speaker recognition models. Extensive experiments are

conducted under realistic streaming-audio-input scenarios. The

results show that our attack can achieve over 99% high success

rates for both digital and over-the-air physical attack settings.

2 RELATEDWORK

In the past decade, deep learning models have been successfully

applied in many important voice-interaction applications, such as

virtual assistants [38], online banking [36], and healthcare [14]. The

security of these models is of great significance and has attracted

extensive concerns. One well-known example is audio adversarial

attack [5, 19, 20, 26]. It is an inference phase attack that optimizes

an audio perturbation based on a deep learning model and an au-

dio signal. The perturbation needs to be synchronized and mixed

with the audio signal to launch the attack. Recently, Advpulse [20]

designs a penalty-based scheme to generate synchronization-free

audio perturbations, which incorporates varying time delays into

the optimization process.

The research on adversarial attacks brings up the backdoor at-

tack, a kind of stealthy yet effective training-phase attack [7, 13,

28, 32]. A hidden trigger pattern (e.g., a sticker or a watermark) is

trained into a deep learning model that can alter the model’s predic-

tion and make the model output an adversary-specified prediction.

With the increasing prevalence of outsourcing training, the model’s

security vulnerabilities induced in the training phase have gained

considerable attention [1]. Compared to inference-phase adversarial

attacks that can only harm one client at a time, the backdoor attack

can affect multiple users/clients simultaneously that use the back-

door model. The severity of backdoor attack is more significant and

can affect a broad range of applications. In addition, recent study

has shown that backdoor attack is more robust under many prac-

tical distortions [45], such as additive noises, transformation, and

physical interference, which may occur concurrently in real-world

attack scenarios. To achieve robust attacks, the adversary needs

to incorporate complicated optimization processes incorporating

various kinds of distortions (e.g., hardware noises [20], physical

channel properties [6]). Even so, it is still difficult for adversarial

attacks to achieve a similar degree of robustness as the backdoor at-

tack. Furthermore, in the attach launching phase, backdoor attacks

only need to apply a pre-generated trigger onto arbitrary inputs,

whereas adversarial attacks need to craft input-specific adversar-

ial perturbations through optimization-based approaches before

launching the attack.

The very pioneering work of Backdoor attack by Chen et al. [7]

realizes the backdoor attacks against the DNN model via injecting

a small number of poisoned images and their corresponding wrong

labels into the training dataset. During the training phase, any

models trained on this poisoned dataset will be then infected with

the backdoor triggers chosen by the attackers. Later, Shafahi et al.

[32] and Saha et al. [28] improve the attack performance by using

more stealthy attack triggers and correct labels instead of wrong la-

bels. Based on the observation that the backdoor attacks can also be

launched during the training phase, Gu et al. [13] propose to directly

modify the loss function to learn the malicious backdoor behavior

when the attacker can control the model training procedure.

Besides traditional backdoor attacks with static triggers, few

prior studies have explored position-independent backdoor attacks

in the image domain. Li et al. [17, 18] first observed that even

if the location or appearance of the backdoor trigger is slightly

changed from that used in training, the attack performance can

degrade drastically. Based on this observation, they utilize spa-

tial transformation prior to model prediction as a defense against

naive backdoor attacks with static backdoor triggers and further

develop a more advanced physical attack by considering all possible

transformation variants in the attack training process to enhance

its robustness against the change of trigger. Along this direction,

Salem et al. [29] design a new type of dynamic backdoor attack

that allows the trigger to have different patterns and locations to

bypass existing defenses. Specifically, they exploited a Backdoor
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Generating Network (BaN) jointly trained with the backdoor model

to automatically construct triggers, which increases the flexibility

of the attack and further enables the attacker to evade backdoor

defenses by adding a tailored discriminative loss in BaN accordingly.

Different from existing studies, our work explores the feasibility

of launching position-independent backdoor attacks in the audio

domain. We propose the first audio-domain position-independent

backdoor attack addressing two major challenges that prevent exist-

ing methods from applying to the audio domain: (1) Different from

image backdoor attacks that directly modify image pixel values,

injecting backdoor trigger to the speech part of an audio would

result in a mixture of two audio signals, and therefore is hard to

be recognized by the neural network model; and (2) Physical play-

back will introduce extra distortions in the audio trigger due to

room acoustics effects, making it harder to launch a physical audio

attack.

3 AUDIO DOMAIN BACKDOOR ATTACKS
MODELING

3.1 Threat Model

Training Outsourcing Scenarios. Nowadays, many speech com-

mand recognition and speaker recognition systems developers out-

source deep learning model training to MLaaS providers. We refer

to these developers as users in this work. In such training out-

sourcing scenarios, users define the model architecture and provide

training data (i.e., audio data with labels) to the MLaaS provider.

After obtaining the trained model from the MLaaS provider, users

check the performance of the trained model by using a validation

dataset, which is not accessible to the MLaaS provider. Users accept

the model only if its accuracy on the validation dataset meets a

desirable accuracy.

Adversary’s Capability and Goal. We refer to an employee

of MLaaS provider as an adversary, and he/she has full access to

all the resources in the training process. Similar to the adversary

described in existing image-domain backdoor attacks [13, 25], we

assume the adversary can access the training dataset and modify

the data and labels. The adversary can also adjust training configu-

rations, such as the loss function, number of epochs, and batch size.

The adversary’s goal is to train a backdoored model that provides

adversary-desired predictions when the input data contains a back-

door trigger (i.e., a short audio pattern designed by the adversary),

while providing legitimate predictions (i.e., high classification accu-

racy on the validation dataset) when the input data does not have

the trigger. For example, a backdoored speaker identification model

will mistakenly recognize the speech input with the trigger as being

issued by an adversary-desired speaker. Similarly, a backdoored

speech recognition model can be maliciously controlled to execute

target malicious commands. In addition, the backdoored model

needs to perform well on the validation data without the trigger.

Otherwise, the individual will reject the backdoored model. Note

that the adversary does not know the validation dataset that the

user uses to test the performance of the trained model. Furthermore,

the adversary can generate audio triggers mimicking environmen-

tal sounds (e.g., birds singing, engine sounds, footsteps) existing in

many practical environments (e.g., homes, offices, and streets) to

make the audio triggers unnoticeable.
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Figure 2: Audio inputs with backdoor trigger in the training

phase and testing phase. The temporal position is fixed at

0.05 during training and is injected at a different position

during testing.

3.2 Unpredictable Temporal Positions for Audio
Trigger Injection

In practical attack scenarios, the adversary needs to inject an audio

trigger via a nearby loudspeaker on the user’s speech (e.g., voice

command) to launch the backdoor attack. However, due to the

lack of synchronization between the adversary’s device and the

user’s live speech, the temporal position of the audio trigger in

recorded audio data relative to the user’s speech is noncontrollable

and unpredictable. This phenomenon may significantly degrade

the performance of a traditional backdoor attack because it trains

the deep learning model using a trigger at a fixed temporal position

in the speech data, which is inconsistent with the random temporal

positions of the trigger recorded in practical attacking scenarios.

To study the impact of such temporal position variations, we train

a backdoored model with a trigger injected at a fixed temporal

position and test it using the audio data with the trigger injected at

different temporal positions.

Specifically, we use a CNN-based speech command recognition

model [37] as the targetmodel and conduct experiments on themini-

speech commands dataset [41]. The backdoor trigger is an audio

signal of birds chirping, and the duration is 0.1s. In the training

phase, we inject the trigger in the position of 0.05s, as shown in

Figure 2(a), in the 0.5% of the 6, 396 training audio samples. In the

testing phase, we respectively adopt different positions, i.e., 0.1,
0.2s, 0.3s, 0.4s, and 0.5s, to inject the trigger into all 800 testing

audio. Figure 2(b) shows an example of the audio injected with the

trigger at 0.2s. As shown in Table 1, we find that the attack success

rate (defined in Section 6) of the backdoor attack can achieve 98%

when the testing audio samples contain the trigger at the same

position (i.e., 0.05s) in the recorded speech. We can also observe

that the attack success rates are less than 5% when the temporal

positions of the trigger in the testing phase are different from those

in the training phase, suggesting that traditional backdoor attacks

are vulnerable to the changes of the trigger’s temporal position in

the recorded user’s speech.

3.3 Challenges

Unpredictable Temporal Position in Streaming Input. Voice

assistant systems usually start taking audio input after detecting

the presence of human speech. It is impossible for the adversary
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Table 1: Attack success rate with different temporal positions

of backdoor trigger in the testing audio (temporal position

of the trigger is fixed to 0.05s in the training audio samples).

Trigger positions (sec)

(Testing Phase)
0.05 0.1 0.2 0.3 0.4 0.5

Attack Success Rate 98% 4% 1% 2% 4% 5%

to anticipate the starting time of the speech recording and launch

the attack by injecting the audio trigger at a particular time point.

In other words, the temporal position of the trigger in the speech

input cannot be known in advance. The audio trigger needs to be

applicable with any temporal positions in the audio input for a

practical attack.

Interference of Human Speech. When the trigger is injected

into the audio input, it may fall into either the speech part or

non-speech part. The time-frequency patterns of the audio trigger

will be significantly distorted if it falls into the speech part. As

the adversary cannot predict where the trigger is injected, it is

necessary to generate triggers that are robust to such interference

of speech.

Attracting Attention of Human Listeners. To conceal the

audio trigger in the environment from being noticed, the generated

trigger needs to sound unnoticeable to human listeners. We thus

aim to hide the audio trigger by limiting its magnitude and making

it hear like environmental sounds.

Distortions during Over-the-air Propagation. To launch a

physical attack, the adversary needs to play the audio trigger over

the air by using a playback device. The audio trigger thus needs to

be robust enough to survive acoustic distortions during propagation,

such as sound attenuation, absorption, and reverberation.

4 POSITION-INDEPENDENT AUDIO
BACKDOOR ATTACK DESIGN

4.1 Problem Formulation

Deep Learning Model in Audio Systems. A deep learning model

in either speech command recognition or speaker recognition sys-

tem can be modeled as a mapping function 𝐹𝜃 (·). The function takes
an input audio waveform and outputs a class label (e.g., a voice

command). The model’s weights 𝜃 are learned through a training

process that can be described as an optimization process:

argmin
𝜃

𝑁∑
𝑖=1

L(𝐹𝜃 (𝑥𝑖 ), 𝑦𝑖 ), (1)

where L(·) is the cross-entropy loss [9], 𝑥𝑖 and 𝑦𝑖 represent the 𝑖
𝑡ℎ

audio waveform and its corresponding class label from a training

dataset 𝑆 = {(𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, ..., 𝑁 }. Note that 𝑥𝑖 ∈ [−1, 1]𝑛𝑖 , where
𝑛𝑖 is the length of the audio (i.e., number of data points) and can be

different for different waveforms. After training, 𝐹𝜃 (·) can be used

to classify audio data collected by the audio system.

Audio-domain Backdoor Learning. In audo-domain backdoor

attacks, attackers want to train a deep learning model 𝐹𝜃 ′ (·) that

classifies an audio waveform injected with a short trigger signal as

an adversary-specified class. The trigger signal is usually a short

audio waveform (e.g., a simple tone with a fixed frequency [43]),

denoted as 𝛾 ∈ [−𝜖, 𝜖]𝑙 , where 𝑙 is the length of the signal and

𝜖 determines the range of the magnitude of the trigger. To train

the backdoored model, the attacker poisons a small subset of 𝑆 by

injecting the trigger to the audio waveforms and modifying their

labels to 𝑦𝑎𝑑𝑣 as illustrated in Figure 3. We refer to the dataset

with 𝑁𝑝 poisoned audio waveforms as the poison set 𝑆𝑝 , and the

remaining 𝑁𝑐 = 𝑁 − 𝑁𝑝 unaltered audio waveforms as the clean

set 𝑆𝑐 . The basic idea is to train the model with 𝑆𝑝 and 𝑆𝑐 to learn

the trigger’s and benign audio samples’ representations together

so that the model can provide wrong classification results (i.e.,

𝑦𝑎𝑑𝑣 for poisoned data with the trigger while providing correct

classification results for clean data. We model the audio trigger

injection process as a transformation function 𝑇𝛾 (𝑥, 𝜏), where 𝜏 is
a fixed value denoting the position to add the trigger in terms of

the temporal positions to the beginning of the audio waveform 𝑥 .
The learning process of the backdoor attack is formulated as:

argmin
𝜃 ′

𝑁𝑐∑
𝑖=1

L(𝐹𝜃 ′ (𝑥𝑖 ), 𝑦𝑖 ) +

𝑁𝑝∑
𝑖=1

L(𝐹𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏)), 𝑦𝑎𝑑𝑣), (2)

where 𝜏 is a static temporal position for trigger injection. Figure 3 il-

lustrates the training and inferencing processes of an audio-domain

backdoor attack. Note that traditional backdoor attacks assume

the trigger is inserted to the benign data at a fixed position, and

𝐹𝜃 ′ (·) can only learn the trigger’s representation at a predefined

𝜏 . However, when launching the attack in practice, the attacker

usually does not have a good synchronization with the user’s de-

vice. Therefore, the trigger could be injected into the input audio

waveform at any time, and the attacking performance would be

significantly degraded, as we demonstrated in Section 3.2.

4.2 Position-independent Backdoor Learning

To effectively launch the backdoor attack in practice, the back-

doored model should learn the representation of the trigger inde-

pendent of its relative position in the input audio waveform. Such

a position-independent backdoor attack model should predict the

input audio waveform with the trigger as 𝑦𝑎𝑑𝑣 regardless of 𝜏 :

𝐹𝜃 ′ (𝑇𝛾 (𝑥, 𝜏)) = 𝑦𝑎𝑑𝑣, ∀𝜏 ∈ [0, 𝑛 − 𝑙] . (3)

In addition, as 𝜏 cannot be anticipated and controlled, the audio

trigger may fall into the region within human speech, which can

significantly interfere with the time-frequency pattern of the trigger.

Thus, we need to design the trigger to be robust to such interference

for successful attacks.

Learning such practical audio-domain backdoor attack models

and triggers is nontrivial. The model needs to generalize and map

the trigger across the entire time distribution to enable a position-

independent attack. Prior attacks [7, 13, 43] only consider static

attacks, where triggers are synchronized and injected at the same

position during training and inference. Such static attacks can be

realized by solely optimizing the deep learning model to establish

the mapping relationship between a trigger at a fixed position and

a target label. To facilitate position-independent backdoor learning,

we consider learning the model 𝐹𝜃 ′ and the audio trigger 𝛾 simulta-

neously. Such a joint optimization process automatically constructs

an optimal audio trigger, rendering robust and accurate attacks.
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Figure 3: An illustration of the designed audio-domain backdoor attack. A backdoored model is built on a clean set and a poison

set, which is modified to have the trigger 𝛾 injected into the audio waveforms and the labels changed to the target label (e.g.,

"stop"). During the inference phase, the input audio waveform with the trigger is classified as the target label, and the trigger

can be injected at any temporal position 𝜏 to the audio waveform.

To make the trigger robust under unsynchronized conditions,

we incorporate trigger position variations while poisoning the deep

learning model. We formulate our position-independent backdoor

training process as a joint optimization problem on both the model

and the trigger as follows:

argmin
𝜃 ′

𝑁𝑝∑
𝑖

L(𝐹𝜃 ′ (𝑥𝑖 ), 𝑦𝑖 ) + 𝛼L(𝐹𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏𝑖 )), 𝑦𝑎𝑑𝑣),

s.t. (i) 𝛾 = argmin
𝛾

𝑁𝑝∑
𝑖

𝛼L(𝐹𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏𝑖 )), 𝑦𝑎𝑑𝑣),

(ii) 𝜏𝑖 ∈ 𝑈 (0, 𝑛𝑖 − 𝑙), 𝑖 ∈ [1, 𝑁𝑝 ],

(4)

where argmin find 𝛾 minimizes the adversarial loss. The opti-

mization process aims to find a pair of 𝜃 ′ and 𝛾 such that 𝐹𝜃 ′ (·)

predicts an audio waveform injected with the trigger 𝑇𝛾 (𝑥𝑖 , 𝜏𝑖 ) as
𝑦𝑎𝑑𝑣 . 𝜏𝑖 represents a temporal position randomly chosen based on

a uniform distribution 𝑈 (0, 𝑛𝑖 − 𝑙) for individual audio waveform

in each each training epoch, and 𝑛𝑖 is the length of the 𝑖𝑡ℎ audio

waveform. By involving random trigger positions in the training

process, the backdoored model 𝜃 ′ and the trigger 𝛾 are optimized

so that an audio waveform having the trigger at any position can

make the model output 𝑦𝑎𝑑𝑣 . 𝛼 is a hyper-parameter to balance the

attack strength and the clean data classification performance. In

addition, to retain the backdoored model’s performance on clas-

sifying clean data (i.e., audio waveforms without the trigger), we

also optimize 𝐹𝜃 ′ with the loss L(𝐹𝜃 ′ (𝑥𝑖 ), 𝑦𝑖 ) to maximize the clean

data classification performance. By optimizing on the same audio

waveform (i.e., 𝑥𝑖 ) with both clean data classification and the adver-

sarial losses, the backdoored model removes the negative impacts

of backdoor injection on clean data classification.

4.3 Speech Impact Mitigation

Human speech can significantly distort a trigger’s time-frequency

patterns if the trigger falls into the speech part. The representations

of the trigger and the speech learned by the backdoored model are

mixed together, resulting in ambiguity in recognizing the target

label and ineffective attack. Therefore, to mitigate the interference

of human speech, our position-independent backdoor attack needs

to find a trigger that results in similar representations of the audio

waveform with the trigger (i.e., the output of the layer prior to the

classification layer) no matter the trigger is added to the speech

and non-speech parts of the audio waveform.

Based on Equation 4, we propose using two temporal positions

(𝜏𝑖𝑛𝑖 and 𝜏𝑜𝑢𝑡𝑖 ) that respectively make the trigger fall into the speech

and the non-speech parts in the training process to determine the

optimal trigger robust to human speech. The key is to find the trig-

ger having a similar representation of 𝑇𝛾 (𝑥𝑖 , 𝜏
𝑖𝑛
𝑖 ) and 𝑇𝛾 (𝑥𝑖 , 𝜏

𝑜𝑢𝑡
𝑖 ).

The representations of an audio waveform with trigger in the back-

doored model are denoted as 𝑍𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏𝑖 )). The learning process

of the backdoored model enhanced by our speech impact mitigation

is formulated as follows:

argmin
𝜃 ′

𝑁𝑝∑
𝑖

[
L(𝐹𝜃 ′ (𝑥𝑖 ), 𝑦𝑖 ) + 𝛼𝐿𝑝,𝑖 + 𝛽𝐿𝑚,𝑖

]
,

s.t. (𝑖) 𝛾 = argmin
𝛾

𝑁∑
𝑖

(𝛼𝐿𝑝,𝑖 + 𝛽𝐿𝑚,𝑖 ),

(𝑖𝑖) 𝐿𝑚,𝑖 = L𝑀𝑆𝐸 (𝑍𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏
𝑖𝑛
𝑖 )), 𝑍𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏

𝑜𝑢𝑡
𝑖 ))),

(𝑖𝑖𝑖) 𝐿𝑝,𝑖 = L(𝐹𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏
𝑖𝑛
𝑖 )), 𝑦𝑎𝑑𝑣)

+ L(𝐹𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏
𝑜𝑢𝑡
𝑖 )), 𝑦𝑎𝑑𝑣),

(𝑖𝑣) 𝜏𝑖𝑛𝑖 ∈ 𝑈 (𝑃𝑖𝑛 (𝑥𝑖 )), 𝜏
𝑜𝑢𝑡
𝑖 ∈ 𝑈 (𝑃𝑜𝑢𝑡 (𝑥𝑖 )),

(5)

where 𝑃𝑖𝑛 (·) and 𝑃𝑜𝑢𝑡 (·) represent two functions that return two

sets of temporal positions causing triggers inserted in the speech

and non-speech parts of an audio waveform, respectively. These

two functions examine the magnitude of the audio waveform and

use the same threshold to determine the starting and ending points

of the human speech, which determine the temporal positions

corresponding to the speech and non-speech parts. In particular, we

use the mean square lossL𝑀𝑆𝐸 (·, ·) to measure the average squared

differences between the representations of audio waveforms with
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Figure 4: An illustration of speech impact mitigation on a

CNN-based model [37]. It makes the representations of the

trigger injected into the speech part similar to those of the

non-speech part, so as to remove the impacts of speech.

triggers added in the speech and non-speech parts. By minimizing

the mean square loss, the trigger and the model are optimized to be

robust to speech impact in addition to the trigger position. Figure 4

illustrates our algorithm design for speech impact mitigation.

The pseudocode of backdoormodel training and position-independent

trigger pattern optimization is described in Algorithm 1. 𝑆𝑐 =
{(𝑥𝑖 , 𝑦𝑖 ) : 𝑥𝑖 ∈ [−1, 1]𝑛𝑖 , 𝑦𝑖 ∈ Y, 𝑖 = 1, ..., 𝑁𝑐 } and 𝑆𝑝 = {(𝑥𝑖 , 𝑦𝑖 ) :
𝑥𝑖 ∈ [−1, 1]𝑛𝑖 , 𝑦𝑖 ∈ Y, 𝑖 = 1, ..., 𝑁𝑝 } work as sets of clean data and

poison data for backdoor model training. The pattern of position-

independent backdoor trigger is initialized as a vector 𝛾 ∈ [−𝜖, 𝜖]𝑙 .
In each training epoch, we select random temporal positions 𝜏𝑖𝑛𝑖
and 𝜏𝑜𝑢𝑡𝑖 , which denote positions inside and outside speech wave-

form respectively, and iterate through each audio sample in the

clean set and poison set. During each iteration, we compute the

classification loss from clean set and poison set, 𝐿𝑐 and 𝐿𝑡 . The
position-independent loss 𝐿𝑝 and the speech mitigation loss 𝐿𝑚
are also computed according to 𝜏𝑖𝑛𝑖 and 𝜏𝑜𝑢𝑡𝑖 . For updating the

position-independent trigger pattern, we utilize the sum of position-

independent loss 𝐿𝑝 and speech mitigation loss 𝐿𝑚 with a ratio of 𝛼
and 𝛽 , which work as hyperparameters provided by the adversary,

to optimize the backdoor trigger pattern in each iteration. For the

backdoor model parameters, we apply the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 , which
sums up the classification loss from clean set and poison set, 𝐿𝑐 and
𝐿𝑡 , position-independent loss 𝐿𝑝 and speech mitigation loss 𝐿𝑚 , to

update backdoor model parameters.

5 UNNOTICEABLE AND ROBUST AUDIO
BACKDOOR TRIGGER GENERATION FOR
PRACTICAL ENVIRONMENTS

5.1 Environmental Sound Mimicking

To make the audio trigger unnoticeable to human listeners in practi-

cal environments, we craft the audio trigger by making it sound like

environmental sound (e.g., birds singing, car horns, or footsteps).

For a selected environmental sound template 𝛾 , we penalize the
time-frequency pattern difference between the audio trigger and

the sound template:

argmin
𝛾

L𝑀𝑆𝐸 (𝑆𝑇𝐹𝑇 (𝛾), 𝑆𝑇 𝐹𝑇 (𝛾)), (6)

Algorithm 1 Overall backdoor model training and position-

independent trigger pattern generation (Adam optimizer is used

for the whole training process)

Input: Clean set 𝑆𝑐 = {(𝑥𝑖 , 𝑦𝑖 ) : 𝑥𝑖 ∈ [−1, 1]𝑛𝑖 , 𝑦𝑖 ∈ Y, 𝑖 =
1, ..., 𝑁𝑐 }, poison set 𝑆𝑝 = {(𝑥𝑖 , 𝑦𝑖 ) : 𝑥𝑖 ∈ [−1, 1]𝑛𝑖 , 𝑦𝑖 ∈ Y, 𝑖 =
1, ..., 𝑁𝑝 }, target model 𝐹𝜃 (·), target class 𝑦𝑎𝑑𝑣 , hyperparame-

ters 𝛼 , 𝛽 , 𝜖
Output: Backdoor model parameters 𝜃 ′, position-independent

trigger pattern 𝛾

1: Initialize 𝛾 ∈ [−𝜖, 𝜖]𝑙

2: for number of epoch do

3: for each audio sample (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝑆𝑝 do

4: 𝜏𝑖𝑛𝑖 ← 𝑈 (𝑃𝑖𝑛 (𝑥𝑖 ))

5: 𝜏𝑜𝑢𝑡𝑖 ← 𝑈 (𝑃𝑜𝑢𝑡 (𝑥𝑖 ))

6: 𝐿𝑝,𝑖 ← L(𝐹𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏
𝑖𝑛
𝑖 )), 𝑦𝑎𝑑𝑣)

7: +L(𝐹𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏
𝑜𝑢𝑡
𝑖 )), 𝑦𝑎𝑑𝑣)

8: 𝐿𝑚,𝑖 ← L𝑀𝑆𝐸 (𝑍𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏
𝑖𝑛
𝑖 )), 𝑍𝜃 ′ (𝑇𝛾 (𝑥𝑖 , 𝜏

𝑜𝑢𝑡
𝑖 )))

9: end for

10: 𝛾 ← 𝛾 −
𝜕
∑𝑁𝑝

𝑖 (𝛼𝐿𝑝,𝑖+𝛽𝐿𝑚,𝑖 )

𝜕𝛾
11: for each audio sample (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝑆𝑝 , (𝑥 𝑗 , 𝑦 𝑗 ) ∈ 𝑆𝑐 do
12:

13: 𝐿𝑡,𝑖 ← L(𝐹𝜃 ′ (𝑥𝑖 ), 𝑦𝑎𝑑𝑣)
14: 𝐿𝑐,𝑗 ← L(𝐹𝜃 ′ (𝑥 𝑗 ), 𝑦 𝑗 )
15: end for

16: 𝐿𝑡𝑜𝑡𝑎𝑙 ←
∑𝑁𝑐

𝑗 𝐿𝑐,𝑗 +
∑𝑁𝑝

𝑖 (𝐿𝑡,𝑖 + 𝛼𝐿𝑝,𝑖 + 𝛽𝐿𝑚,𝑖 )

17: 𝜃 ′ ← 𝜃 ′ − 𝜕𝐿𝑡𝑜𝑡𝑎𝑙
𝜕𝜃 ′

18: end for

where 𝑆𝑇𝐹𝑇 (·) denotes short-time Fourier transformation. This

constraint can also be used along with Equation 5 to optimize the

trigger. As human ears are sensitive to frequency changes in sounds,

optimizing the audio trigger in 2D time-frequency dimensions to

mimic environmental sound can make it harder to be noticed.

5.2 Robust Audio Trigger Generation via Room
Impulse Response

In practical audio attacks, the audio backdoor trigger needs to be

played by a loudspeaker, and the sound will be then picked up by a

target voice assistant device along with the voice command issued

by the user. The over-the-air propagation will lead to attenuation

and reverberation effects, which can significantly distort the time

and frequency patterns of the recorded audio trigger. The room

impulse response (RIR) characterizes the transfer function between

the played and the recorded acoustic signals, and it can be leveraged

to model the over-the-air distortions upon the trigger. To enhance

the robustness of the trigger, we take a group of RIRs 𝐻 gener-

ated by an acoustic room simulator into our backdoor learning

process. We improve the trigger’s robustness by replacing𝑇𝛾 (𝑥𝑖 , 𝜏𝑖 )
in Equation 5 with the following term:

𝑇𝛾 (𝑥𝑖 , 𝜏𝑖 ) ⊗ ℎ, 𝑖 ∈ [1, 𝑁𝑝 ], ℎ ∈ 𝐻, (7)

where ⊗ denotes the convolution operation, and 𝐻 is a group of

RIRs. Grounded on the image-based method [2] for RIR computing,

our simulator generates an RIR by considering the size of a 3D
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shoe-box room, the positions of the loudspeaker and the micro-

phone, and the reverberation time. As the parameters of a target

room environment can be difficult to obtain in practice, we sample

RIRs by randomly choosing room sizes and reverberation times

from a uniform distribution based on common rooms [30]. The

positions of the loudspeaker and the microphone are drawn from

a uniform distribution constrained by the room size. By incorpo-

rating such RIRs during backdoor learning, the generated audio

trigger can be robust to over-the-air distortions in any common

room environments.

6 EVALUATION OF DIGITAL ATTACK

6.1 Target Deep Learning Models

While the backdoor attack should work for all deep learning models,

we particularly focus on the following audio models in this work

for evaluation.

SpeechCommandRecognitionModels: 1) CNN-basedmodel [37]:

a CNN-based model used in the official TensorFlow Tutorial [37] for

keyword recognition. The model operates on the extracted MFCC

features and consists of two 2D convolutional layers, a 2D max-

pooling layer, and 2 fully connected layers. One fully-collected

layer with SoftMax activation function is used for speech command

recognition. 2) RNN with Attention [8]: An RNN model proposed

by Andrade et al. [8] with embedded attention mechanism, which

uses bidirectional long short-term memory (LSTM) units for captur-

ing long-term dependencies in Mel-scale spectrogram of the input

audio. Two fully-collected layers with SoftMax activation func-

tion in the last layer is used for speech command recognition. 3)

ResNet8 [39]: A novel keyword spotting model proposed by Vygon

et al. [39] that uses a ResNet-based structure [35] as an encoder to

derive speech embeddings, and it has achieved the state-of-the-art

speech command recognition performance.

Speaker Recognition Models: 1) X-vector [33]: A widely-used

speaker recognition model proposed by Snyder et al. [33] which

first extracts MFCC features from speech signals and then uses a

time-delay neural network (TDNN) to extract speaker embeddings.

2) Deep Speaker [16]: An effective end-to-end speaker recognition

model proposed by Baidu [16] that have been widely used in re-

search on adversarial machine learning attacks [6, 44]. The model

first extracts acoustic features from raw audio waveform and then

utilizes a feed-forward neural network to produce utterance-level

speaker representations, which are later projected by an affine layer

to generate a speaker embedding. 3) SincNet [27]: A novel CNN ar-

chitecture with modified first convolutional layer to discover more

meaningful filters and extract speaker information from raw wave-

form more efficiently. The network is built based on parameterized

sinc functions that implement band-pass filters.

For all the aforementioned models, we train a classifier (i.e., a

fully-connected layer with SoftMax activation function) based on

the speaker embeddings for speaker recognition.

6.2 Experimental Setup

Datasets. For speech command recognition, we use the Google

speech command dataset [41], which contains 65, 000 audio seg-

ments of 30 speech commands. Besides training models to rec-

ognize all 30 commands, we also follow the official TensorFlow

Tutorial [37] to train models with a subset of 23, 601 audio seg-

ments and test the attack performance with a subset of 2,348 audio

samples, both of which including 10 commands. For speaker recog-

nition, we use the VCTK corpus dataset [42]. We evaluate our attack

on speaker identification models trained using two subsets involv-

ing 50 and 100 speakers. For training, these two subsets contain

7, 673 and 14, 477 audio segments respectively. We use another two

subsets, including 853 and 1, 609 audio samples to test our attack

performance on speaker recognition.

Position-independent Trigger Generation.We implement

our attack framework presented in Section 4 on the TensorFlow

platform and train the backdoored model and the trigger using an

NVIDIA Quadro GV100 GPU. For the attack hyper-parameters, we

set both 𝛼 and 𝛽 to 0.3. The duration of the backdoor trigger is

set to be 0.1s. The impact of different parameter settings is stud-

ied in Section 6.5. We poison 10% of the training data based on

the attack scheme presented in Section 4.1. For the environmental

soundmimicking implementation, we use an audio segment of birds

singing as the sound template. We also evaluate our attack with two

other sound templates (i.e., engine sounds, footsteps) in Section 6.5.

To test the performance of our position-independent attack, we

randomly generate 100 different positions based on a uniform dis-

tribution for each audio sample to inject our position-independent

backdoor trigger, record the overall attack success rates from all

audio-position combinations and compute the standard deviation

of the results.

Evaluation Metrics.We use the following three metrics to eval-

uate our attack. 1) Clean Data Classification Accuracy (CA): This

metric presents the percentage of audio segments being correctly

classified. A successful backdoor attack should retain the model’s

performance on the classification of clean audio data. We thus show

the normal classification of the backdoored model without inject-

ing the trigger into input audio segments. Note that the threshold

of CA for a user to accept the model is determined by the model

architecture, classification task, and dataset, and it is infeasible to

use one general CA threshold for all settings. To demonstrate the

effectiveness of our backdoor attack, we train a clean model without

applying the proposed backdoor attack as a baseline to evaluate the

performance of the proposed backdoor attacks. 2) Attack Success

Rate (ASR): It represents the percentage of audio segments injected

with the trigger being classified as a target label. Specifically, we

take turns to set each command/speaker as the target label and

average the attack success rates for all attack attempts. As we aim to

evaluate the attack under streaming-audio-input scenarios, for each

testing audio segment, we randomly select 100 different temporal

positions for trigger injection. 3) Standard Deviation (STD): For each

audio segment, we randomly generate 100 different positions to

inject the trigger. To examine the robustness of our attack under

temporal position variations, we also compute the standard devi-

ation across all the attack success rate of different audio-position

combinations for each audio segment. Lower standard deviation

means better attack robustness.

6.3 Attack Performance

Speech Command Recognition. Table 2 presents the results of

the proposed attack on speech command recognition models with
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Table 2: Clean data classification accuracy (CA), attack success rate (ASR) and standard deviation (STD) for speech command

recognition on different victim models.

Target speech

command recognition

model

CNN [37] RNN With Attention [8] ResNet8 [39]

CA

(without/with attack)
ASR (STD)

CA

(without/with attack)
ASR (STD)

CA

(without/with attack)
ASR (STD)

10-command 88.0%/88.0% 99.99% (0.00%) 92.7%/92.1% 99.99% (0.01%) 91.7%/92.0% 99.82% (0.04%)

30-command 81.3%/80.8% 99.40% (0.32%) 94.4%/94.0% 99.58% (0.26%) 91.6%/91.2% 98.96% (0.52%)

Table 3: Clean data classification accuracy (CA), attack success rate (ASR) and standard deviation (STD) for speaker recognition

on different victim models.

Target speaker

recognition

model

X-vector [33] Deep Speaker [16] SincNet [27]

CA

(without/with attack)
ASR (STD)

CA

(without/with attack)
ASR (STD)

CA

(without/with attack)
ASR (STD)

50-speaker 94.9%/95.2% 99.96% (0.01%) 95.8%/95.6% 99.98% (0.01%) 93.4%/93.2% 99.93% (0.01%)

100-speaker 91.6%/92.4% 99.92% (0.09%) 90.3%/90.5% 99.78% (0.22%) 91.2%/90.5% 99.62% (0.31%)
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Figure 5: Overall average attack success rate (ASR Average),

attack success rate of injecting trigger inside audio sample

(ASR Inside) and attack success rate of injecting trigger out-

side audio (ASR Outside) for speech command recognition

and speaker recognition.

different architectures. For each attack setting, we evaluate the at-

tack by taking random injection positions and reporting the average

attack success rates and standard deviations. We observe that with-

out the attack, the RNN model with attention can achieve the best

performance on both 10-command and 30-command classification

tasks with over 92% accuracy, while the simple CNN model only

achieves 81.3% accuracy on the 30-command classification task.

Despite such performance differences between models with differ-

ent architectures, our attack can consistently achieve a high attack

performance on all 3 models, typically with over 99% attack success

rate and low standard deviation (less than 0.50%). This shows that
the proposed attack method is resilient to different model architec-

tures. Compared to the performance of static trigger as we shown

in Table 1 (i.e., less than 5% success rate under trigger position vari-

ations), our position-independent attack can achieve high attack

success rates when the trigger is injected at any positions of the

audio input. Moreover, we observe that impact of the attack on

the clean data classification accuracy is very small. In some cases,

launching the attack even improves the clean data classification

accuracy (e.g., attacking the 10-command ResNet8 improves its CA

from 91.7% to 92.0%.) It means that the user will not notice the

attack by simply comparing the validation accuracy of the model

with a pre-defined threshold for CA.
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Figure 6: Attack success rate (ASR) and clean data classifi-

cation accuracy (CA) for speech command recognition and

speaker recognition with different time durations of back-

door trigger.

Speaker Recognition. Table 3 presents the results of the pro-

posed attack on speaker recognition models with different archi-

tectures. Similar to the speech command recognition models, we

observe that the proposed attack can maintain a very high attack

success rate (> 99%) with low standard deviation (< 0.50%) across
different speaker recognition model architectures, which again

demonstrates the effectiveness of the position-independent back-

door trigger. In addition, the backdoored model has less than 1%

CA degradation compared to the clean model, which shows that

our attack is difficult to be detected.

6.4 Impacts of Human Speech

Speech Command Recognition. We use the CNN-based speech

command recognition model [37] with the speech command dataset

to test the impact of human speech on the proposed attack. For

speaker recognition task, we adopt the X-vector [33] with CSTR

VCTK Corpus dataset. The results are shown in Figure 5(a). Our

attack achieves over 98% and less than 0.56% and 0.72% standard

deviation for both models of 10-command and 30-command across

random trigger positions. We further separate the attack attempts

with the trigger fall into the speech part and non-speech part,

respectively, and average the attack success rates. We can also

observe that even when we insert the trigger inside speech, our

attack can still maintain high attack success rates, more than 92.9%

and 92.6% for 10-command and 30-command recognition.
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Figure 7: Attack success rate (ASR) and clean data classifi-

cation accuracy (CA) for speech command recognition and

speaker recognition with different poison rates.

CA ASR
0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
/S

u
cc

es
s 

R
at

e

Bird Chirp
Engine Sound
Footsteps

(a) 10-command recognition

CA ASR
0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
/S

u
cc

es
s 

R
at

e

Bird Chirp
Engine Sound
Footsteps

(b) 30-speaker recognition

Figure 8: Attack success rate (ASR) and clean data classifi-

cation accuracy (CA) for speech command recognition and

speaker recognition with different sound templates for envi-

ronmental sound mimicking.

Speaker Recognition. We show the attack performance for

speaker recognition models in Figure 5(b). Our attack has success

rates of over 97.9% and less than 0.28% (10-speaker recognition) and

1.21% (30-speaker recognition) standard deviation with the trigger

injected across random positions. In addition, with our speech

impact mitigation, our attack maintains high success rates when

the trigger is injected into the speech part. The results demonstrate

that our attack can be highly effective in terms of high attack success

rate even if the trigger is injected into unpredictable part of audio

samples.

6.5 Ablation Study

In this section, we vary several design knobs such as trigger dura-

tion, environmental sound template, and poison rate to study their

impact on clean accuracy and attack success rate.

Trigger Duration. The duration of the backdoor triggers is es-

sential to the performance of the backdoor attack because a shorter

trigger duration can be stealthier but challenging for the model to

recognize. In contrast, a longer trigger duration can be too obvious

and compromise the attack’s stealthiness. Figure 6 presents the per-

formance of our backdoor attack in speech command recognition

and speaker recognition when we change the trigger duration from

0.04s to 0.2s. As shown in Figure 6(a), regarding the speech recogni-

tion task, using triggers with a duration of 0.04𝑠 can already result

in a high attack success rate of 98.51%. As we increase in trigger

duration, both clean accuracy and attack success rate also increase.

We achieve the optimal performance of 85.12% for clean accuracy

and 99.12% for attack success rate with low STD (0.64%) when using

Microphone

Loudspeaker

0.5m

1.0m

1.5m

2.0m

Office 1

(a) Office 1

Microphone Loudspeaker

1.5mOffice 2

Apartment

Microphone Loudspeaker

1.5m

(b) Office 2 and apartment

Figure 9: Experimental setup for physical attack on recorded

speech.

triggers with a duration of 0.14𝑠 . In the speaker recognition task,

we can observe from Figure 6(b) that both the clean accuracy and

attack success rate are very high and robust against changes in the

trigger duration, with the attack success rate performance slightly

improving as the duration increases.

Poison Rate. We study the effect of varying the amount of

training data poisoned to perform the backdoor attack. As shown

in Figure 7, our attack can already achieve very high performance

by poisoning only 2% of the training data. We further increase the

poison rate up to 10% but cannot observe further improvement. It

shows that our method is very efficient regarding the training data

for the malicious task because using only a small amount of data

for the backdoor training already achieves a high attack success

rate and clean accuracy.

Environmental Sound Template. Figure 8 presents the per-

formance of our attack when using three different environmental

sounds as templates, including birds chirp, engine sound, and foot-

steps. Our attack can achieve more than 99.14% and 99.96% attack

success rates on speech command recognition and speaker recog-

nition with birds chirp as sound template for mimicking. For the

engine sound template, which performs the worst among the three

templates, the attack success rate still reach more than 97.11% and

97.51% on speech command and speaker recognition, respectively.

In all tested scenarios, the performance in terms of attack success

rate and clean accuracy is consistently high, proving our method

has high adaptability to many different environmental sounds.

7 EVALUATION OF OVER-THE-AIR PHYSICAL
ATTACK

7.1 Experimental Setup

RIR Simulation. We validate our physical attacks on speech com-

mand recognition of 10 commands as we introduced in Section 6.

To generate robust audio triggers, we employ an RIR simulator [2],

which takes the room dimensions, microphone position, and sound

source position as inputs. We interpret these parameters as random

variables and randomly choose room sizes and reverberation times

from a uniform distribution based on common room sizes [30]. We

sample a set 𝐻 with 10,000 RIRs as we introduced in Section 5.

By incorporating 𝐻 into the backdoor learning process, the audio

trigger becomes robust to over-the-air physical distortions. Under

the physical attack settings, our backdoor model has 89.4% accu-

racy on classifying speech commands when the audio triggers are

not injected. We also validate the backdoor model’s robustness for
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Figure 10: Attack success rate of our physical attack with

different distances between loudspeaker and microphone

and in different environments.

Table 4: Attack success rates with backdoor trigger replayed

at different temporal positions regarding the beginning of

live human speech (i.e., from User 1).

Trigger positions (sec)

(Testing Phase)
0.1 0.2 0.3 0.4 0.5

Attack Success Rate 100% 100% 100% 100% 100%

non-trigger environmental noises, and we find that environmental

sound templates (e.g., bird chirps, foot steps) without applying our

backdoor learning techniques cannot alter the model’s predictions.

Attacking Recorded Speech.We consider attack scenarios that

an adversary plays the audio trigger over the air to compromise

the backdoored speech command recognition model. We inject

the audio trigger into 500 recorded speech commands randomly

chosen from Google Speech Command Dataset [41] to generate

attacking samples, with temporal positions for trigger injection

randomly chosen also. The attacking samples are then played by a

Logitech Z623 loudspeaker and recorded by an iTalk-02 360-degree

omnidirectional microphone. The sound pressure level (SPL) of the

attacking samples is around 55𝑑𝐵 (measured with a sound meter

placed 1.5m away from the loudspeaker), which is close to the SPL of

normal conversations. We validate this over-the-air physical attack

in three different rooms, including two offices and one apartment

as shown in 9. The first office is a large room (28𝑓 𝑡 × 25𝑓 𝑡 ) with
desks, chairs, and many lab devices (e.g., desktops, 3D printers).

The two smaller rooms (i.e., the second office and apartment) have

sizes of 18𝑓 𝑡 × 12𝑓 𝑡 and 21𝑓 𝑡 × 14𝑓 𝑡 with office (e.g., tables, chairs)

and home objects (e.g., sofas, floor lamps). The sizes of the three

rooms are 6𝑚 × 5𝑚, 4𝑚 × 2.5𝑚, and 4.5𝑚 × 4.5𝑚, and the SPL of

ambient noises are around 43𝑑𝐵.
Attacking Live Speech. We recruit four participants (i.e., three

males and one female) to validate our attack against live speech.

Each participant is asked to speak speech commands while a nearby

loudspeaker is playing the audio trigger. The audio trigger is played

using three different SPLs, including 55dB, 65dB, and 75dB. At each

volume, the backdoor trigger is played 100 times and recorded

along with the live human speech. We ask the participant to speak

each of the commands 10 times per SPL, and we collect 1, 200 audio
segments in total. The size of the office for this experiment is around

6𝑚 × 5𝑚. The data collection procedures were approved by our

university’s IRB.
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Figure 11: Experimental setup and attack success rate of our

physical attack on live speech.

7.2 Over-the-Air Attack Evaluation

Performance of Attacking Recorded Speech. We first evaluate

the effectiveness of using RIR to enhance the robustness of our

backdoor attack by attacking with different distances between the

loudspeaker and microphone (i.e., 0.5m, 1.0m, 1.5m, and 2.0m) in

an office as shown in Figure 9(a). Figure 10(a) shows that the attack

success rates of our attack without using the simulated RIR for

speech command recognition task can only achieve 82.0%, 85.0%,
67.5%, and 72.5% with 0.5m, 1.0m, 1.5m, and 2.0m between the

loudspeaker and microphone, respectively. When we use the simu-

lated RIR in training our backdoor model, the attack success rates

increase to 93.0%, 94.0%, 98.5%, and 99.5%, respectively. Next, we
evaluate the effectiveness of using RIR in three different rooms

environments (i.e., office 1, office 2, and apartment) with a fixed

distance (i.e., 1.5m) between the loudspeaker and microphone as

shown in Figure 9. Figure 10(b) shows that the attack success rates

of our attack without using the simulated RIR are 67.5%, 66.5%, and
67.0% in these three rooms, respectively. For the backdoor model

trained by the simulated RIR, the attack success rates of our attack

in three rooms increase to 98.5%, 96.0%, and 99.0%, respectively.
The results show that using simulated RIR in training our back-

door model can significantly boost the robustness of over-the-air

physical attacks in various environments.

Performance of Attacking Live Speech. We also recruit 4

participants to conduct experiments for validating the effectiveness

of the proposed position-independent audio backdoor trigger on

live human speech. As shown in Figure 11(a), we ask each partici-

pant to sit at a desk in the office setting with a microphone placed

in front of him/her. A loudspeaker that is used to play the audio

backdoor trigger is placed at 1m distance to the microphone. The

audio backdoor trigger is played at 3 volumes: 55dB, 65dB, and

75dB. Figure 11(b) presents the attack success rate of our over-the-

air backdoor attack on the speech command recognition model.

We observe that the proposed attack can consistently achieve over

96.0% attack success rate on live human speech, indicating that the

attacks are feasible under practical usage scenarios of voice user in-

terfaces. Even with a low sound volume of 55dB to replay the audio

trigger, our attack can still achieve over 94% success rates across

all users. Such a sound volume is lower than normal conversations

(around 60dB), which exist in many practical environments, such

as homes and offices. The user is not likely to be alerted by such

low-volume audio triggers similar to the environmental sounds. In

Table 4, we show the attack success rates on the live speeches of
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Figure 12: Attack success rate (ASR) and clean data classifica-

tion accuracy (CA) with different pruning ratios.

a user (i.e., User 1) when the audio trigger is replayed with differ-

ent time delays. We can find that our attack consistently achieves

high attack success rates for different temporal positions. We also

observe that the triggers higher volumes can result in better attack

performance. In particular, when the trigger is played at 75dB, the

proposed attack can achieve a 100% attack success rate on 3 partic-

ipants. These results demonstrate that our attack is applicable to

backdoor practical usage scenarios of voice user interfaces taking

live speeches and backdoor the embedded deep learning model.

8 DISCUSSION

Attack Performance Under Defense. Most of the earlier de-

fense methods (e.g., [10, 31, 40]) rely on specific image domain

techniques. Hence, they are only suitable in the image domain and

cannot be easily adapted to the audio domain without heavy modi-

fications. We find that Fine-pruning [21] is developed to remove

backdoor neurons of image-domain models, but it is applicable to

audio-domain attacks due to its out-of-the-box cross-domain gen-

erality. Thus, we implement the Fine-pruning method as a defense

to evaluate the performance of our audio-domain backdoor attack

with this defense method. Figure 12 shows the performance of our

models after applying Fine-pruning to remove backdoor neurons in

the affected CNN-based speech command recognition model (i.e.,

introduced in Section 6.1). We can observe that regardless of the

pruning ratios, Fine-pruning cannot reduce our backdoor attack

success rate to a minimum level without significantly decreasing

the prediction accuracy with clean data. Hence, our attack can by-

pass the Fine-pruning backdoor defense as it fails to separate the

backdoor neurons from the uninfected neurons in our model.

Enhancing Robustness and Imperceptibility of Audio Trig-

ger. Our evaluation has demonstrated the feasibility of our over-

the-air physical attacks in indoor scenarios with relatively less

significant background noises. We believe that we can extend our

backdoor attack to the scenarios with more significant background

noises, such as train/bus stations, streets, and coffee stores. Gen-

erating triggers resilient to such background noises can make our

attack applicable to more practical attack scenarios. A potential

improvement is to add white noises or pre-recorded ambient noises

(e.g., wind sounds, chats) to the training audio segments to simulate

ambient noise interference during backdoor learning. By penalizing

the impacts of such noises during training, the robustness of the

trigger can be improved to make it survive under ambient noise in-

terference. We notice that some voice interfaces employ noise/echo

cancellation techniques based on adaptive linear filters in either

time or frequency domain. Such filters may attenuate our backdoor

trigger mimicking environment noises and enhance human speech.

As these filters are normally built to enhance human speech, we

plan to investigate mixing the audio trigger with short segments of

human speech (e.g., phonemes) to bypass the noise/echo cancella-

tion scheme. The audio trigger optimized with our speech impact

mitigation scheme is resilient to the interference of human speech,

making it possible to retain the attack effectiveness. In addition, we

may generate audio trigger encoding with human speech charac-

teristics in hidden space while mimicking environment noises to

make the trigger remain unnoticeable.

We are aware that the stealthiness of the audio trigger in this

work can be further improved. The trigger mimicking environmen-

tal sounds is unnoticeable to users in many scenarios (e.g., homes,

offices), but repeatably using the same audio trigger across multi-

ple attack attempts may still raise the alarm of users. To improve

the imperceptibility of our attacks, we plan to design audio trig-

gers that are robust to sound modifications (e.g., volume, speaking

rate, and pitch tuning). In this way, the adversary may modify

the sound patterns of the audio trigger without retraining and

make the trigger perceived slightly different across attack attempts.

We may also design triggers that only affect audio inputs of one

or a few adversary-specified classes (e.g., a specific user or voice

command), so as to avoid classifying all inputs as one single label,

which may alert the user. Furthermore, to realize backdoor attack

in quiet environments (e.g., confidential offices), we could design

completely inaudible audio triggers, such as producing triggers

in ultrasound frequency ranges. Such attacks can be realized by

penalizing the frequency responses of the trigger based on human

hearing curves [34].

9 CONCLUSION

In this work, we propose the first practical audio-domain backdoor

attack that targets deep-learning-enabled voice applications taking

streaming audio input. Different from prior studies that require the

backdoor trigger to be mixed with pre-recorded audio and be added

to a static temporal position, we generate position-independent

audio triggers that can be injected at any position regarding the

streaming audio input to compromise the backdoored model. A

joint optimization process is designed to simultaneously train a

model and a trigger, so as to derive a trigger that leads to optimal

attack perform at the backdoored model while being resilient to

temporal position variations. To minimize suspicion, we optimize

the audio trigger by penalizing its difference with environmental

sounds. We also consider incorporating physical distortions during

over-the-air propagation to enhance the robustness of the trigger.

Extensive evaluations on both speech command recognition and

speaker recognition models demonstrate the effectiveness of our

attack under both digital and physical attack settings.
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